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Abstract. We present an electron density model functional method (EDMF) based on the
embedded atom theory and a pseudopotential approach to study thermodynamic properties
and stability of binary metallic alloys. Test calculations of the pure Ni, Al and their alloys
demonstrate the efficiency and accuracy of the method. The ground-state properties of ordered
compounds and a disordered FCC phase in the Ni–Al system were obtained in normal conditions
(P = 0) and under pressure. The results obtained atP = 0 are in quite good agreement with
experimental data. Calculation under pressure predicts a change of compound stability with
increasing pressure.

1. Introduction

Many problems in the theory of metallic systems require detailed understanding of the
mechanisms of atomic bonds in metals and their alloys. Great progress in the theory
of alloys has been made within the frameworks of the first-principle approaches, such as
LMTO, ASW, KKR, LPPW etc. Interesting results for alloys with an ideal crystalline lattice
and cubic symmetry of ordering were obtained. However, when considering the physical
processes accompanied by distortions of the ideal structure the self-consistent models
face insurmountable calculating difficulties. This caused the development of alternative
theoretical approaches based on density functional ideas, such as the Finnis–Sinclair
method and the embedded atom method (EAM). Semi-empirical embedded potentials of
Finnis–Sinclair or EAM are widely used in calculations of crystalline defects, surface
properties and processes related to the disruption of periodicity of a crystalline lattice.
Despite their insufficient theoretical foundation these approaches take into account a many-
body character of atomic interactions in solids and are very simple for calculation. The
total energy is evaluated as a sum of pair and EAM-type potentials of atomic interactions.
There is a certain freedom of choosing approximations for the energy terms and their
quantitative contribution to the total energy. For properties of pure metals such ambiguity
in the form of the total energy does not deteriorate the accuracy of calculations. However,
for alloys it does not allow us often to obtain the exact results for energy of formation and
other properties of experimentally observed phases, because the difference between the total
energies of the competing phases is negligible. It is supposed that the main cause for the
poor quantitative description of ideal alloys in EAM is due to the crude approximation of
energy terms. Therefore, choice of a more correct expression for the total energy of alloys
could yield a large dividend in accuracy of the results. An improved model has to give
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not only good qualitative results for alloys, as in the EAM scheme [1], but also satisfactory
quantitative data in comparison with the first-principle approaches. In this paper, we propose
the electron density model functional method (EDMF) [2], based on the theses of the EAM
and a pseudopotential approach. Our model uses inter-atomic potentials of EAM type. As
the present work shows, the applied model yields quite accurate results for properties of
the ground state of binary alloys with arbitrary structure in normal conditions (P = 0).
Apart from this, it allows us to determine variations of the phase stability under pressure
without any modification of the ordinary calculation scheme. This allows us to obtain new
information about alloy structures under loading and can lead closely to understanding of
the mechanisms of phase transformations.

The purpose of this work is to show the resources of the EDMF method, based on
the EAM ideas, in qualitative and quantitative analyses for ideal binary alloys. Within
the framework of this approach the complete calculation of the ordered phases and an
FCC-disordered phase in the Ni–Al system were accomplished atP = 0 and with pressure
increasing. The paper is organized as follows. In section 2, the basic theses of the EDMF
method used in our calculations are presented. In section 3 we present the result obtained
for the Ni–Al system in normal conditions. The results for thermodynamic stability of the
Ni–Al alloys under pressure are presented in section 4.

2. Theory

In the EDMF method, the electron density of a crystal is represented as a sum of bothρc(r),
a core electron density, andρυ(r), an almost free electron density. The core electrons are
of internal filled shells and valence d electrons; the almost free (valence) electrons are of s,
p shells. Taking into consideration such a density representation the total energyE[ρ] can
be expressed by

E = E1[ρc] + E2[ρυ ] + E3[ρc, ρυ ] (1)

whereE1[ρc] is the energy of core electrons, consisting of Coulomb, kinetic and exchange
terms;E2[ρυ ] is the energy of almost free electrons;E3[ρc, ρυ ] is the energy of interaction
between the core and the almost free (valence) electron subsystems.

The energy of the core subsystem is taken, according to the Kim–Gordon approximation
[3], as a sum of effective short-range potentialsV Cαβ(Rij )

E1[ρc] = 1

2

∑
αβ

N∑
i,j

′
Cαi C

β

j V
C
αβ(Rij ) (2)

whereRij is a distance between theith andj th atoms;N is the number of atoms in an
alloy; Cαi takes the value equal to 1 if theith site is occupied by an atom ofα type, and
zero, otherwise. If core densities of neighbouring atoms do not overlap, theE1 value is
equal to zero.E2[ρυ ] in (1) is given in terms of the Thomas–Fermi approximation for
almost free electron density

E2[ρυ ] = Eq [ρυ ] +
∫
Ekxc(ρυ) dV +

∫
Ek(ρυ,∇ρυ) dV (3)

where the first term defines Coulomb energy, the second represents kinetic, exchange and
correlation energies of the almost free electrons and the third term is a correction to the
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kinetic energy caused by inhomogeneity of electron density. The Coulomb energy in the
expression (3) for an alloy is determined as

Eq [ρυ ] =
∑
α

NαE
α
qi +

1

2

∑
α,β

N∑
i,j

′
Cαi C

β

j V
q

αβ(Rij )

where

Eαqi =
1

2

∫ ∫
VV ′

ραυ (r)ρ
α
υ (r
′)

|r − r′| dV dV ′ −
∫
V

Zαυi ρ
α
υ (r)

r
dV

V αβq (Rij ) =
Zαυi Z

βυ

j

Rij
+ 1

2

∫ ∫
VV ′

ραυ (|r −Ri |)ρβυ (|r −Rj |)
|r − r′| dV dV ′

−
∫
V

Zαυi ρ
β
υ (|r −Rj |)
|r −Ri | dV −

∫
V

Z
βυ

j ραυ (|r −Ri |)
|r −Rj | dV.

HereNα is the number ofα atoms in the alloy andZαυi is the part of the charge of anα
atom nucleus equal to the number of the almost free electrons.

By analogy with localized core electrons the density of almost free electrons can be
written as

ρυ(r) =
∑
α

N∑
j

Cαj ρ
α
j (|r −Rj |)

∫
ραυ (r) dV = nαυ (4)

wherenαυ is the number of almost free electrons in atomα. The densityραυ (r) can be
written in terms of Slater’s function superposition

ραυ (r) =
m=2∑
p=1

(βαp )
ναp+3

4π(ναp + 2)!
Nα
p r

ναp e−(β
α
p r).

Here
∑m

p=1N
α
p = nαυ and ναp , βαp are parameters of Slater’s functions. The effects of sd

hybridization, as in the paper [4], were considered by means of fractional numbersnαυ
obtained from the first-principle calculations. In this papernαυ for Al was given equal to 3,
and for Ni 1.4. Note that the electron density representation in terms of the Slater functions
allows us to obtain the analytical expression for the Coulomb energyEq in (3).

In terms of EAM potentials the total energy of a pure metal depends only on the volume
V and the spaces{Rij } between atoms. To transformE2[ρυ ] to such form, let us writeρυ(r)
as a sum of two terms

ρυ(r) = 〈ρυ〉 +1ρυ(r)
where〈ρυ〉 is an averaged density of the almost free electrons in an alloy that depends on
an atomic volume. ExpandingEKXT (ρυ) by Taylor’s theorem on1ρυ(r) and truncating
the series by the second term, we obtain∫
V

EKXC [ρυ(r)] dV = V
{
EKXC(〈ρυ〉)− 1

2
〈ρυ〉2∂

2EKXC
∂p2

∣∣∣∣
〈ρυ 〉

}

+1

2

∂2EKXC
∂ρ2

∣∣∣∣
〈ρυ 〉

∑
α

Nα

∫
V

[ραυ (r)]
2 dV + 1

2

∑
α,β

N∑
ij

′
Cαi C

β

j V
KXC
αβ (〈ρυ〉,Rij )

where

V KXC
αβ (〈ρυ〉,Rij ) = ∂2EKXC

∂ρ2

∣∣∣∣
〈ρυ 〉

∫
V

ραυ (|r −Ri |)ρβυ (|r −Rj |) dV.
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Making similar mathematical transformations for the last term of equation (3), one can
show that

E2[ρυ(r)] = E0(〈ρυ〉)+ 1

2

∑
α,β

N∑
i,j

′
Cαi C

β

j V
υ
αβ(〈ρυ〉, Rij ) (5)

where

V υαβ(〈ρυ〉, Rij ) = V qαβ(Rij )+ V KXCαβ (〈ρυ〉, Rij )+ V gαβ(〈ρυ〉, Rij ).
HereE0(〈ρυ〉) is a term depending only upon the volume and the averaged density〈ρυ〉;
V υ
αβ is an effective pair potential of almost free electron interaction.

The expression forE3[ρc, ρυ ] is searched as in a pseudopotential approach

E3[ρc, ρυ ] =
∑
α

N∑
j

Cαj

∫
V

Wα
ps(ρυ(r), |r −Rj |)ρυ(r) dV. (6)

HereWα
ps is a norm-preserving pseudopotential of anα atom acting on a pseudodensity

ρυ(r). Express the pseudodensityρυ(r) at thej th atom in equation (6) as

ρυ(r) = ραυ (|r −Rj |)+
N∑
i 6=j

ραυ (|r −Rij |). (7)

According to the perturbation theory, expand equation (6) in terms of a small parameter,
being the last term of equation (7). We obtain

E3[ρc, ρυ ] =
∑
α

N∑
j

Cαj

{∫
V

Wps(|r −Rj |, ραυ (|r −Rj |))ραυ (|r −Rj |) dV

+
∞∑
k=0

∫
V

f αk (|r −Rj |)
[∑

β

∑
i 6=j

C
β

i ρ
β
υ (|r −Rij |)

]k+1

dV

}
wheref αk (r) are functions depending on theα-atom pseudopotential and its derivatives

f αk (r) =
1

k!

{
∂kW

∂ρkυ

∣∣∣∣
ραυ

+ 1

k + 1
ραυ (r)

∂k+1W

∂ρk+1
υ

∣∣∣∣
ραυ

}
.

In the case of a pure metalE3 can be written as

E3[ρc, ρυ ] =
N∑
j

{∫
V

Wα
ps(|r −Rj |, ραυ (|r −Rj |))ραυ (|r −Rj |) dV + Fα(ρυ(Rj ))

}
(8)

where the first term determines the core–valence interaction for isolated atomα. The
electron densityρυ(Rj ) at thej th atom’s nucleus is a many-body function determined by
the overall contribution of the electron ‘tails’ of neighbouring atoms. By analogy with EAM,
the functionFα(ρυ) can be considered as a local potential at the atomα, contributed by its
interaction with all remaining atoms of the system. The potentialFα(ρυ) for a metal ofα
type is obtained, as in EAM [5], through the equation of state, formulated for expanded or
compressed metals [6]. Here the value ofFα(ρυ) is the difference between the sublimation
energyEαsub(�), given by the equation of state, and the sum of the computed termsEα1 [ραc ]
andEαυ [ραυ ] for the pure component.

In order to obtain the expression forE3 in case of a binary alloy, it is necessary to
consider both the crystalline lattice of the alloy and the alloy’s equilibrium volume per
atom, �, instead of those in the case of the pure metal. Expanding the core–valence
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interaction energy in equation (6) into a Taylor series in1ραυ (r) to the first order term one
can obtain the following expression∫
V

Wα
ps(r, ρυ(r))ρυ(r) dV =

∫
V

Wα
ps(r, ρ

m
α (r))ρ

m
α (r) dV

+
∫
V

{
Wα
ps(r, ρ

m
α (r))+

∂Wα
ps

∂ρυ

∣∣∣∣
ρmα

}
1ραυ (r) dV

where1ραυ (r) =
∑

β

∑N
j C

β

j ρ
β
υ (|r −Rj |) −

∑N
j ρ

α
υ (|r −Rα

j |) is the difference between
densities of the alloy and the pure metal. Here the first integrated expression is equivalent
to the first term of equation (8) for pure metals being the alloy components. The second
expression related to the alloy potentialFα(ρυ) can be written as

Fα(ρυ(Rj )) = Fα(ρmυ (Rαj ))+1Fα (9)

where

1Fα = γα ∂Fα
∂ρυ

∣∣∣∣
ρmυ (R

α
j )

(ρ̄α(Rj )− ρ̄mα (Rαj )) (10)

ρ̄α(Rj ) =
∑
β=A,B

N∑
i 6=j

C
β

j n
β
υρ

β
υ (Rij ) ρ̄mα (R

α
j ) = nαυ

N∑
i 6=j

ραυ (R
α
ij ). (11)

The formulae (10) and (11) contain the so-called effective densities of almost free electrons
given at atom’s nucleus. Their designations are respectivelyρ̄α(Rj ) for an alloy, andρ̄mα (R

α
j )

for a pure metal. Here the contribution of the density from atomβ is increased by the factor
nβυ in comparison with the initial atomic density in (4).

The calculations show that computing the electron density at the atomα as

ραυ (Rj ) =
∑
β=A,B

N∑
i 6=j

C
β

j ρ
β
υ (Rij )

we obtain an incorrect result for the charge transfer between the components of an alloy
in the Ni–Al system in the energy term of the core–valence interaction. For example, it is
known that when forming NiAl alloy the electronic transfer goes from Al atoms to Ni atoms
and is equal to 0.6 e (wheree is the electron’s charge) [7]. Let us compare the density
values at the different atoms in the alloy NiAl (B2) (at the alloy’s equilibrium volume) and
in pure metals Ni and Al at their equilibrium volumes. For the case of the initial density
ραυ (Rj ) we have a slight increasing of the electron density at the Ni atoms by the factor
of 1.01, and a larger increasing, by the factor of 1.69, at the Al atoms. The main cause
of this is the requirement that the electron density is calculated only at the point (atomic
nucleus), not over the whole crystal. This, as well as in EAM, simplifies the calculation, but
deteriorates the final results of the total energy computing. To obviate such a difficulty we
introduced the effective densities giving more a correct pattern of redistribution of almost
free electron charge between the different sorts of atom, when they have variousnυ . In
this caseρ̄Ni in the alloy NiAl (B2) increases by the factor of 1.96 in comparison with the
pure metal and̄ρAl increases very slightly, by the factor of 1.01. This is in good qualitative
agreement with the experimental result [7] and, further, leads to a more correct description
of the Ni–Al phase diagram.

In our approach, the variation of the density when crystal structure changes from the
lattice of a pure metal to an alloy is considered in term of the variation of the effective
density1ρ̄υ . The values1ρ̄υ , Fα(ρυ) and(∂F/∂ρ)ρmυ are defined for pure metals and only
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Table 1. Equilibrium volumes�0 and energies of formation1E for pure metals of various
structures.

Al Ni

�0 (10−29) 1E 1Eγ �0 (10−29) 1E 1Eγ
Structure (m3/atom) (kJ mol−1) (kJ mol−1) (m3/atom) (kJ mol−1) (kJ mol−1)

A1 1.629 0.000 0.000 1.088 0.000 0.000
A2 1.636 1.441 1.063 1.094 3.909 0.008
A2a 1.603 5.225 — 1.035 3.046 —
D513 1.832 11.943 39.030 1.322 36.066 2.948
C16 1.757 11.395 23.803 1.232 32.900 3.263
C1 1.899 19.329 43.344 1.407 52.126 0.213
C15 1.712 7.989 16.225 1.177 23.572 2.796
D020 1.882 18.938 42.220 1.388 52.770 0.806

a Calculated volumes and energies from [9].

depend on the atomic arrangement{Rij } and volume�. Thus, the total energy of an alloy
can be written as

E(�) = E0(〈ρυ〉)+ 1

2

∑
αβ

N∑
ij

′
Cαi C

β

j Vαβ(〈ρυ〉, Rij )

+
∑
α

N∑
j

Cαj {Fα(ρ̄υ)+1Fα(ρ̄υ, {Rij })}. (12)

Here the potentialFα(�) corresponds to the variation of core–valence energy for pure
metal α when its equilibrium volume�α varies to be equal to the alloy one,�. The
correction1Fα in (9) describes the variation of core–valence energy caused by both factors:
redistribution of the density of almost free electrons at alloy formation and crystal structure
transformation to the lattice of an alloy. The obtained expression (12) allows calculation
of equilibrium volumes and energies for various crystal structures providing minimization
of the total energy of an alloy on both the volume and lattice parameters. Unknown
model parameters{γα} for any binary system can be obtained using the information on
thermodynamic properties for a few phases in this system.{γα} are calculated to provide
the theoretical results, being in good agreement with experimental data for formation energy
1H and equilibrium volume� for any phase.

For accurate description of phase diagrams, it is necessary to ensure the energetic
stability of the experimentally observed structures to be determined correctly over the whole
range of composition. In particular, in the case of pure metals (Ni and Al), the theory must
give the thermodynamic stability of FCC lattices. As shown, equation (12) gives the correct
description for pure metals Al and Ni when passing from one crystalline structure to another.
The results for formation energies1E of the pure metals in various structures are presented
in table 1. The ground states of both Ni and Al are predicted to be FCC in comparison
with the other calculated structures. The values1E are in reasonably good agreement
with the results provided by LMTO [8] and the pseudo-potential approach [9] for a BCC
structure. Here the values1Eγ , related to the core–valence contribution in1E, show that
for Ni the stability of the FCC structure is caused by short-range repulsive interactions (2)
between overlapping d-electron densities of neighbouring atoms. As follows from table 1,
the contribution term1Eγ is very small for Ni, but for Al, where the core interactions are
negligible, it is the main term determining the energy of a structure.
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According to equation (12), the total energy of an alloy can be expressed as a functional
of electron density distribution at different atoms and averaged atomic volume. At the same
time, the electron density distribution is determined by the arrangement of atoms in the
alloy, i.e. numbers of atoms of each kind on coordination spheres and atomic spaces{Rij }.
Thus, the total energy depends only on both the atomic volume and lattice parameters.
Consequently, to determine the equilibrium structure characteristics for the ground state
of an alloy it is necessary to minimize the total energy on the atomic volume and lattice
parameters for all known structures. Such a procedure allows us not only to obtain the
equilibrium parameters of the alloy, but also to investigate the phase stability at tetragonal
and other distortions of the lattice.

3. Results for the Ni–Al system in normal conditions

The Ni–Al system in normal conditions(P = 0) [10], represented in figure 1, is
characterized by a few solid phases: an FCC (A1) phase in both Al and Ni rich parts
and ordered intermetallic compounds NiAl (B2), Ni3Al (L1 2), NiAl 3(D020), Ni2Al 3 (D513)
and low-temperature Ni5Al 3. Among the numerical attempts to describe these phases, the
first-principle investigations [8, 11] allowed us to obtain the most accurate results. The list
of the computed structures of alloys has included all the experimentally observed and also
metastable ones. In [11] the energetic parameters for the possible structures, D03, D022,
B32, D5, D7 and so on, were calculated. The formation energies and latter parameters for
the complex phases D513, D020 firstly were described in the LMTO approach in [8]. In

Figure 1. Experimental phase diagram of the Ni–Al system [10].
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the present study, we also carry out the calculations for a wide list of competing structures
for both phases, realized in the Ni–Al system and not realized. The coefficients{γα} in
equation (12) for the Ni–Al alloys were obtained using a fit to the experimental quantities
for both the formation energy1H = −59.073 kJ mol−1 and the equilibrium volume
� = 1.204× 10−29 m3/atom for the NiAl (B2) alloy [12]. The computed parameters
γα for Ni and Al are equal to 1.405 844 and 0.315 251, respectively.

The enthalpy of formation for a binary alloy is evaluated, as

1H = EAB(�, ρA, ρB)+ P�−
∑
α=A,B

Cα(Eα(�α)+ P�α) (13)

where EAB is the total energy of an alloy;Eα is the energy of a pure metal in the
experimentally observed structure;�α, � are equilibrium volumes of a pure metalα and an
alloy, respectively;Cα is a relative concentration ofα-component in the alloy. Quantities
Eα(�α) and�α are calculated for the pure metalα using the equation of state [6]. Pressure
P and bulk modulusB for an alloy are calculated in terms of equation (13) and the formulae

P = −∂Etot /∂� B = �∂2Etot/∂�
2.

Note, that in normal conditions, atP = 0, the equation (13) gives a value for the energy of
formation of an alloy.

The results provided by the EDMF method for formation energies, equilibrium volumes
and bulk moduli in the case of stable and metastable phases are presented in table 2. Note
that for each structure, the total energy is obtained as a dependence on the atomic volume
and its minimum determines values for both the equilibrium total energy and the equilibrium
volume. As table 2 shows, all the results obtained are in good agreement with available
experimental data [10, 12–14] for the ordered phases observed in the Ni–Al system. These
are closely correlated with the theoretical results [11] for cubic structures and, in contrast
to those, are more complete as extending to the complex structures, such as D020, D513 and
others. At the same time the calculations [8] give the lowered values of1H for all the
ordered phases (excepting D020) in comparison with experiment and our calculations.

The following intermediate ordered phases, such as B2 (NiAl), L12 (Ni3Al), D020

(NiAl 3), D513 (Ni2Al 3), are obtained to be stable. To describe the compound Ni5Al 3 with
narrow homogeneous region at low temperatures [10], we examined a BCC structure D5
isotypical with Ga3Pt5, as in [11]. However, the calculated1H (D5) is situated barely above
the line connecting enthalpies of B2 and L12 (figure 2), so the D5 phase cannot be stable
even at low temperatures. One can suppose that the real structure for the Ni5Al 3 alloy differs
from D5 and has an orthorhombic lattice, not a cubic one. In a similar way, our calculations
do not confirm the stability of the Ni7Al phase, denoted as D7 and isotypical with Ca7Ge.
The calculation [11], quite to the contrary, results in the energetic stability of undistorted
structures D5 and D7. Additional EDMF calculations for alloys of the composition Ni2Al
and NiAl2 with the structures C1, C15, C16, as one could expect, show their thermodynamic
instability.

Apart from the listed intermetallic compounds, the Ni–Al system is characterized by
the region of a disordered solid solution based on pure Ni. According to the calculations,
this disordered phase is realized in the FCC lattice (A1) compared to the BCC one (A2). It
is necessary to note that the calculation of the energy of disordered phases in terms of only
the equation (12) is insufficient, because solid solutions are characterized by the effects of
so-called static displacements of atoms leading to local distortions of lattice parameters and
increasing the total energy. In order to view these effects and to calculate the energy of
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Table 2. EDMF results for1H , B and �0 of various structures in the Ni–Al system in
comparison with LMTO results [8] and experimental data.

1H B � (10−29)

Composition Structure (kJ mol−1) (GPa) c/a (m3/atom)

Ni7Al D7 −18.237 185.38 1.00 1.111

Ni3Al L1 2 −37.292 182.32 1.00 1.133
D03 −35.032 178.70 1.00 1.137
D020 −24.811 153.72 0.77 1.219
A2 −26.092 166.61 1.00 1.155
A1 −27.048 170.67 1.00 1.149
D03

a −46.732 — 1.00 1.084
L12

a −48.360 — 1.00 1.102
L12 (exp.)b −38.332 174.7 1.00 1.128

Ni2Al C16 −33.386 153.69 1.06 1.251
C15 −16.299 154.46 1.00 1.266
C1 −32.724 152.34 1.00 1.353

Ni5Al 3 D5 −46.657 169.84 1.00 1.170
A1 −31.682 157.49 1.00 1.193

Ni3Al 2 D513 −45.208 158.90 1.23 1.319
A1 −31.960 154.81 1.00 1.204

NiAl L1 0 −43.953 155.87 1.00 1.224
B2 −59.073 164.02 1.00 1.204
A2 −31.067 142.78 1.00 1.256
A1 −31.143 144.57 1.00 1.250
L10

a −56.185 — 1.00 1.179
B2a −75.599 — 1.00 1.175
B2 (exp.)b −59.073 165.9 1.00 1.204

Ni2Al 3 D513 −57.099 153.60 1.24 1.409
A1 −2.920 164.40 1.00 1.306
D513

a −61.85 — — —
D513 (exp.)b −56.448 — 1.214 1.383

Ni3Al 5 D3 −40.183 142.25 1.00 1.293

NiAl 2 C16 −49.937 145.98 0.91 1.379
C15 −11.339 94.88 1.00 1.460
C1 −47.757 137.33 1.00 1.477

NiAl 3 L12 −27.045 121.30 1.00 1.382
D03 −25.801 120.30 1.00 1.386
D020 −44.846 130.10 0.76 1.491
A2 −18.058 111.44 1.00 1.411
A1 −18.649 112.86 1.00 1.404
L12

a −21.754 — 1.00 1.374
D03

a −16.411 — 1.00 1.353
D020

a −39.89 — — —
D020 (exp.)b −37.807 — 0.73 1.465

NiAl 7 D1 −10.911 96.85 1.00 1.497

a Calculated values in LMTO approach [8].
b Experimental values: energies of formation from [12]; bulk moduli from [13]; volumes from [14].

static lattice distortions the formula, resulting from [15, 16], was used in the present paper

1Hr = − ks
16
B
(�A −�B)2

�
I1CACB. (14)
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Figure 2. Enthalpy of formation as a function of composition for compounds and an FCC-
disordered phase studied. Curves 1, 2—calculations without1Hr and with1Hr for the FCC
solid solution.•—EDMF-calculation for ordered phases,M—experiment [12].

Hereks = 4
√

3 for BCC crystals andks = 3
√

2 for FCC crystals;B is a bulk modulus for
an alloy, calculated in this work. The coefficientI1, determined from the elastic moduliC11,
C12, C44 for pure metals, is computed in the case of an alloy as the average by concentration
of the valuesIα1 for the alloy’s components [15]. The quantitiesIα1 for Ni and Al are equal
to 0.243 and 0.262, correspondingly. The formation energy for the FCC solid solution is
represented in figure 2 as a function of concentration. The minimum of this curve, in terms
of the1Hr contribution, corresponds toCNi = 0.58.

4. Alloys of the Ni–Al system under pressure

As already mentioned, the calculated values of formation energy, equilibrium volume and
bulk modulus of the Ni–Al alloys in normal conditions are in good agreement with the
corresponding experimental data [10, 12–14]. Therefore, the results can be considered
as factors speaking in favour of a reasonably satisfied physical correctness of all further
calculations under pressure. As the calculation of1H values under pressure shows, the
stability of any ordered phase in the Ni–Al system atP = 0 does not ensure this phase
stability with outside pressure increasing (figure 3). The alloys referred to different parts
of the phase diagram are predicted to have a dissimilar mechanism of stabilization directly
associated with the quantitative composition of alloys. Based on the results obtained we
can draw the following conclusions.

At the equiatomic composition the B2 ordered phase (NiAl) is thermodynamically
favoured at the overall interval of outside pressure (0–50 GPa). In addition this structure
is stable with respect to the tetragonal distortion in the [001] crystal direction. For Ni-rich
alloys the increasing of outside pressure also is not followed by any phase equilibria changes.
Among all the possible intermetallic compounds, the only Ni3Al phase with the L12 structure
is predicted to be stable at various pressures. Such phases as D5 (Ni5Al 3) and D7 (Ni7Al) are
unstable both in normal conditions and under pressure, though their formation enthalpies are
located very close to the connodes, connecting1H of the thermodynamically stable phases.
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Figure 3. Concentration-dependent enthalpy of formation of the Ni–Al alloys atP = 0, 30 and
50 GPa. The curves correspond to the case of a disordered FCC phase (A1) with regard to static
lattice distortions.

For Al-rich alloys the analysis predicts their more complex behaviour with pressure.
It is caused by both the great variety of structural modifications of the competing phases
for this part of the phase diagram and the fact that the requirement of close packing is
not fulfilled for their structures. The calculations indicate that at zero temperature and
for pressure increasing the Al-rich alloys have a possible change in the composition of
phase equilibria and appearance of new stable ordered phases, not observed at normal
pressure (figure 4). According to the calculations, the alloy atCNi = 0.33 at P = 0
is a heterogeneous mixture of both D020 and D513. Conditions for a Laves phase C16
(NiAl 2) stabilization appear with increasing pressure. The pressure value required for the
stability of C16 varies between 4 and 40 GPa. The structure ratioc/a obtained for this
structure is equal to 0.91, not varying with increasing pressure. The ordered hexagonal
phase D513 is predicted to become thermodynamically unstable even at small pressures.
Its enthalpy of formation is decreasing in absolute value with rising pressure. WhenP is
greater than 6.3 GPa, D513 is less stable with regard to a mixture of NiAl2 (C16) and NiAl
(B2). Consequently, in the Ni2Al 3 alloy under pressure the lamination of the D513 phase is
possible followed by the precipitation of both the ordered compound NiAl2 (C16) and NiAl
(B2): D513 (Ni2Al 3)→ C16(NiAl 2)+B2 (NiAl ). The variations of lattice parametersa and
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Figure 4. The phase diagram (pressure–composition) for the Ni–Al system atT = 0 K.

Figure 5. The evolution of the boundary of the homogeneity region for the Ni-based solid
solution under pressure.

c for the D513 structure are negligibly small under pressure. The calculation also predicts
a limited stability for the D020 (NiAl 3) orthorhombic phase. This phase is calculated to be
stable at pressure varying up to 24 GPa. At 24 GPa there is a point of equilibrium of three
phases: pure Al (A1), D020 (NiAl 3) and C16 (NiAl2). With further pressure increasing the
disappearance of the orthorhombic structure D020 is favoured resulting in the formation of
the mixture from two phases: NiAl2 (C16) and pure Al. At pressure of 34 GPa the possible
structural transition of the NiAl3 alloy to the close-packed FCC-structure L12 was obtained.
A new phase L12 kept stable when pressure was increased up to 50 GPa. Therefore for the
alloy atCNi = 0.25 our calculation provides the following consequence of phase-structural
transitions under pressure: D020 (NiAl 3)→ A1 (Al)+ C16 (NiAl 2)→ L12 (NiAl 3).
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The calculation of the formation enthalpy for a disordered phase in the Ni–Al system
shows the FCC solid solution (A1) to be more favoured in comparison with the BCC one
(A2) at an arbitrary alloy’s composition and pressure value. To estimate the boundary of
the homogeneity region for the Ni-based disordered phase its Gibbs energy was calculated
in term of the model of regular solid solutions

G = 1H + kT [CA lnCA + (1− CA) ln(1− CA)].
Here 1H obtained atT = 0 K were used for the alloys Ni1−xAl x and Ni3Al; the
energy contribution from the heat lattice oscillations to1H is not taken into consideration.
Considering that the Gibbs energy of the Ni3Al is equal to1H of the compound Ni3Al
(L12), the tangent lines are drawn from the point with coordinates1H(L12), CNi = 0.75
to the curves of the disordered phase at the temperature interval from zero to 1600 K.
The coordinates of the points of tangency determine the boundary of the homogeneity
region at various temperatures (figure 5). The resulting curve atP = 0 is in agreement
with the one on the experimental phase diagram. All computations under pressure were
carried out keeping the value of the coefficientI1 in (14) as constant and equal to one at
normal pressure. As figure 5 shows, the increasing of the outside pressure results in a little
decreasing of1Hr values. AtP = 0 the minimum of the curve of1H (with 1Hr ) takes
place atCNi = 0.58. At higher pressures the location of the curve minimum is displaced
to the middle of the concentration interval. For instance, atP = 30 GPa the formation
enthalpy for the disordered solid solution has a minimum atCNi = 0.54, and at 50 GPa it
has one atCNi = 0.52. The theoretical estimation of the solubility boundary under pressure
gives some displacement to pure nickel. The greater is the value of outside pressure the
stronger is this displacement and the narrower is the region of homogeneity of the FCC
solid solution.

Table 3. The values 1� obtained for the ordered phases under pressure.
1� = �−�V (1029) (m3/atom).

P = 0 GPa P = 10 GPa P = 30 GPa P = 50 GPa

NiAl B2 −0.154 −0.115 −0.075 −0.054
Ni3Al L1 2 −0.090 −0.066 −0.042 −0.030
NiAl 2 C16 −0.069 −0.036 −0.013 0.001
Ni2Al 3 D513 −0.004 0.026 0.040 0.047
NiAl 3 D020 −0.002 0.031 0.042 0.046
NiAl 3 L12 −0.112 −0.081 −0.057 −0.042

Table 4. The results obtained in normal conditions for energies and pressures of the predicted
phase transitions.

1�1 1�2 1�1 −1�2 Pteor P ∗
Phase transition E1 − E2

state 1→ state 2 (kJ mol−1) (×10−29) (m3/atom) (GPa)

D020→ Al + C16 −7.112 −0.002 −0.052 0.050 24.0 21.5
Al + C16→ L12 10.017 −0.052 −0.112 0.060 34.0 39.6
D020+ D513→ C16 −1.650 −0.003 −0.069 0.066 4.4 4.0
C16→ L12 + B2 −11.758 −0.069 −0.126 0.056 40.0 31.1
D513→ C16+ B2 −3.375 −0.004 −0.103 0.100 6.3 6.0
D020→ L12 −17.132 −0.002 −0.112 0.110 28.0 27.3
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Analysis of the results obtained for the Ni–Al binary system has indicated that the
energy of formation,1E(P ), for all viewed ordered phases increased in absolute value with
pressure rising, but the difference between1E values for the competing phases changed
slightly. Therefore the main factor in equation (13) responsible for changes of phase stability
under pressure is

P

(
�−

∑
α=A,B

Cα�α

)
.

Here the parenthetical term determines a deviation of the alloy’s equilibrium volume from
Vegard’s volume�V calculated at the same pressureP . The greater is the negative
deviation1� of alloy equilibrium volume from Vegard’s rule, the greater is the increase
of the formation enthalpy in the negative range of values. This results in increasing of
the probability of phase stability with pressure rise. The calculated values of1� at
various pressures for the considered ordered phases are represented in table 3. The table
shows that the stable intermetallides NiAl (B2), Ni3Al (L1 2) have high negative variation
1� at all pressures, whereas for the phases D020, D513, 1� is small and changes its
sign with pressure rise. Our calculation for the NiAl3 alloy gives the greater negative
variation1� for the L12 structure, than for D020. The first-principles calculations [8] at
P = 0 for the NiAl3 alloy gave similar results:1�(L12) = −0.119× 10−29 m3/atom and
1�(D020) = −0.079× 10−29 m3/atom. Formation energy values1E for the phases D020

and L12 change with pressure very slightly. For instance, at pressure rising up to 50 GPa
1E(D020) increased by the factor 1.08 in magnitude, and1E(L12) by 1.25. The latter
is not enough to stabilize the close-packed L12 structure atP < 50 GPa. Therefore, the
stability under pressure of the L12 (NiAl 3) phase is also caused by greater negative variation
of its equilibrium volume from Vegard’s rule. Our calculation predicts the phase transition
D020→ L12 at 28 GPa.

The enthalpy of alloy formation can be approximated as

1H(P ) = 1E(0)+ P1�(0)− 1

2
P 2

(
�0

B0
−

∑
α=A,B

�α0

Bα0

)
(15)

where�0, B0, 1E(0) are an equilibrium volume, a bulk modulus and a formation energy
of an alloy, correspondingly, atP = 0; �α0, Bα0 are a volume and a bulk modulus for a
pure metal ofα type when there is no pressure. The equation (15) includes the values
of thermodynamic properties of alloys evaluated merely in normal conditions. Hence, this
fact can be easily used to estimate approximately the critical pressure values for stable and
metastable phase transitions. The accuracy of determination of phase transition pressure
depends on the accuracy of the results (1H,�,B) obtained in normal conditions. Table 4
introduces the calculated energy differences for both start and final phase states of alloys,
the volume variation from Vegard’s rule for these phases in normal conditions and critical
pressures of phase transitions estimated due to equation (15),P ∗, in comparison with the
detailed resultsPteor . For two-phase alloys the concentration-mean values of formation
energies and volume variations are presented. As table 4 shows, the obtained results for
pressures of phase transitions due to equation (15) differ by 5–10% from the accurate
calculation under pressure. It follows that to predict possible phase transitions and critical
pressure values it is sufficient to make the accurate computation of formation enthalpies,
equilibrium volumes and bulk moduli of the competing phases in normal conditions. This
allows us to simplify the needed calculations and is valid for the phase transitions not caused
by electronic transformations. It is necessary to note that the basic conclusions of the present
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analysis for features of the alloys in the Ni–Al system, obtained in normal conditions, are
legitimate atP not equal to zero.

5. Conclusion

It should be mentioned that the EDMF approach proposed in this paper resembles closely
the embedded atom method [5]. In the EDMF expression for core–valence interactions,
consisting of the termsFα and1Fα, the idea of EAM, to calculate the embedded potential
as a function ofρv(0) in terms of the state equation, was used. In this connection, the
terms of the core–valence energy in the present work are denoted by theFα symbol, as an
embedded function in EAM. It has been shown with the example of the Ni–Al system that
the EDMF method allows evaluation of thermodynamic properties and stability of alloys
with various structures including complex ones not only in normal conditions, but also under
pressure. Nevertheless, this approach is not self-consistent; the correctness of the obtained
results is compared with that of the known first-principle calculations. The results are in
very good agreement with appropriate experimental data. On the other hand, the EDMF
method is similar to the EAM semi-empirical approach. This demonstrates the possibility
in principle to improve the calculation scheme of the semi-empirical potentials. This will
give a possibility to fulfil more correct calculations in the case of many-component metallic
systems and to obtain a more detailed pattern of phase transformations under pressure.
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